0-Sum and 1-Sum Flows in Regular Graphs
نویسندگان
چکیده
Let G be a graph. Assume that l and k are two natural numbers. An l-sum flow on a graph G is an assignment of non-zero real numbers to the edges of G such that for every vertex v of G the sum of values of all edges incident with v equals l. An l-sum k-flow is an l-sum flow with values from the set {±1, . . . ,±(k − 1)}. Recently, it was proved that for every r, r > 3, r 6= 5, every r-regular graph admits a 0-sum 5-flow. In this paper we settle a conjecture by showing that every 5-regular graph admits a 0-sum 5-flow. Moreover, we prove that every r-regular graph of even order admits a 1-sum 5-flow.
منابع مشابه
On 1-sum flows in undirected graphs
Let G = (V,E) be a simple undirected graph. For a given set L ⊂ R, a function ω : E −→ L is called an L-flow. Given a vector γ ∈ R , we say that ω is a γ-L-flow if for each v ∈ V , the sum of the values on the edges incident to v is γ(v). If γ(v) = c, for all v ∈ V , then the γ-L-flow is called a c-sum L-flow. In this paper we study the existence of γ-L-flows for various choices of sets L of re...
متن کاملZero-Sum Flows in Regular Graphs
For an undirected graph G, a zero-sum flow is an assignment of non-zero real numbers to the edges, such that the sum of the values of all edges incident with each vertex is zero. It has been conjectured that if a graph G has a zero-sum flow, then it has a zero-sum 6-flow. We prove this conjecture and Bouchet’s Conjecture for bidirected graphs are equivalent. Among other results it is shown that...
متن کاملZero-Sum Flow Numbers of Regular Graphs
As an analogous concept of a nowhere-zero flow for directed graphs, we consider zero-sum flows for undirected graphs in this article. For an undirected graph G, a zero-sum flow is an assignment of nonzero integers to the edges such that the sum of the values of all edges incident with each vertex is zero, and we call it a zero-sum k-flow if the values of edges are less than k. We define the zer...
متن کاملBalanced Degree-Magic Labelings of Complete Bipartite Graphs under Binary Operations
A graph is called supermagic if there is a labeling of edges where the edges are labeled with consecutive distinct positive integers such that the sum of the labels of all edges incident with any vertex is constant. A graph G is called degree-magic if there is a labeling of the edges by integers 1, 2, ..., |E(G)| such that the sum of the labels of the edges incident with any vertex v is equal t...
متن کاملEdge pair sum labeling of some cycle related graphs
Let G be a (p,q) graph. An injective map f : E(G) → {±1,±2,...,±q} is said to be an edge pair sum labeling if the induced vertex function f*: V (G) → Z - {0} defined by f*(v) = ΣP∈Ev f (e) is one-one where Ev denotes the set of edges in G that are incident with a vertex v and f*(V (G)) is either of the form {±k1,±k2,...,±kp/2} or {±k1,±k2,...,±k(p-1)/2} U {±k(p+1)/2} according as p is even or o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Electr. J. Comb.
دوره 23 شماره
صفحات -
تاریخ انتشار 2016